Public Key Cryptography

Inside PKCS

Rajaram Pejaver

Press the <Page Down> key to advance
Press the <Back space> key to replay a slide

Outline

This is not a talk about PKI. This is a prerequisite for PKI.

e Background: Shared Secret Keys
e Public Key Cryptography
- Key Exchange explained

e Key Exchange using Diffie-Hellman
e Key Exchange using RSA New
e Signatures using RSA p
e Applications of PKC

e Problems/issues with PKC

(c) Rajaram Pejaver

Background: Shared Secret Keys

It takes two to share a secret

Say, Alice & Bob communicate using shared secret keys
— Alice encrypts text and Bob decrypts it, using the same key

Kis @ v > Kig Only 1 Key is needed.
-~ But when Alice, Bob, Carol & Dave want to communicate
Carol Total of 6 Keys needed.
o)
/MQ Nieys =N * (N = 1) /2
Kas /N ‘ - For 100 communicants, N
Kac y@{(> Kac » Nieys

(l / Kaog will be ~5000 !

\ For 1000 communicants,
Nkeys will be ~500,000 !!
Dave

(c) Rajaram Pejaver 3

Public Key Cryptography

No sharing of private information.

e Public Key Cryptography keys come in pairs: Pp. Pes Po, Po
— Public component: P,, Shared with everyone. e
— Private component: K,, Never shared or exposed. .. =
" A B o

e Each person needs only one key pair, ever. /'
— Scales linearly: 4 keys for 4 subjects. \

— Much easier to secure private component.

N
K

A
e Problem: Encryption is slow & compute intensive.

— Cannot encrypt messages with PKC.
e Solution: Use PKC to establish a shared secret session key.

- This is called Key Exchange.

— Alice & Bob agree to use K,g without anyone else finding out.

(c) Rajaram Pejaver 4

Diffie-Hellman Algorithm (1)

Key Exchange Only. No direct encryption. No signatures.

e First, everyone agrees on a number for ‘generator value’: g
e Each person picks a random number as Private Key: K,
e Each person computes their Public Key, Pj: gl (e grky
e Alice and Bob exchange their public keys. P, €2 Pg
e Each person exponentiates other’s public key with their own private key.
Private Public Key Exponentiation
Aice | Ka |Pa=g*Ka P, K, = (@"K,)" K, = g*(K,*Kp)
Bob | Ke |Ps=g*Ks P.AK, = (g"Ky)*K, = g*(K,*Kp)
e Tada... Both parties have computed the same value: g’ (K,*Kg)

— They can use this value to compute a shared secret key .

(c) Rajaram Pejaver 5

Diffie-Hellman Algorithm (2)

Example: using regular math and small numbers.

First, everyone agrees on a number for ‘generator value’: g = 8
Each person picks a random number as Private Key:

- KA —] 6, KB — 4
Each person computes their Public Key, P, and Pg:
- P, = gKa = 85 = 262 144, Pg =gKs = 84 = 4096

Each person exponentiates other’s public key with their own private key.

Private | Public Key Exponentiation

Alice 6 262 144 | 262 144™4 = 4 722 366 482 869 645 213 696

Bob 4 4 096 4096”6 = 4722 366 482 869 645 213 696

They can use this value to compute a shared secret key.

(c) Rajaram Pejaver 6

Diffie-Hellman Algorithm (3)

Some analysis.

e Note how big the result got, even though we used single digit keys.
— The result was 22 digits long!
e Yet, Alice’s private key can be easily hacked.

- Given the value of g and Alice’s public key, calculate the log function:
Ka = logg(Pa)

e One solution, we could use much larger numbers for keys and for g.
— That helps a bit, but not anywhere near enough.
e Next solution: Use a different number system: Modulo arithmetic field.

- Itis much harder to calculate log functions in modulo fields.
e Discrete logarithm problem in modular fields is NP complete.

- In addition to g, we need to pick a system wide prime modulus p.
e p>g

(c) Rajaram Pejaver

Diffie-Hellman Algorithm (4)

Using modular arithmetic and small numbers.

e Besides g, agree on ‘prime modulus’ p: g = 8, p = 17
e Each person picks a random number as Private Key: '
- K, = 6, K = 4
e Each person computes their Public Key, P, and Pg:
- P, =gfkA% 17 = 8% 17 = 262144 % 17 = 4
- Pg =gkB% 17 = 8% 17 = 4096 % 17 =16
e Each person exponentiates other’s public key with their own private key.

Private | Public Key Exponentiation
Alice 6 4 474 %17 = 256 % 17 =1
Bob 4 16 16 2 6 % 17 = 16 777 216 % 17 =1

e Foundation: Given g, p and P, (g*"K, % p) it is not easy to calculate K,.

(c) Rajaram Pejaver 8

Diffie-Hellman Algorithm (5)

Elliptic Curve math.

e Given a polynomial of the form: yE =2’ +ar+b

— The points on the curve form a closed set of num
— Adding two points My = My +M, = -P
— Doubling a point M, = M, + M,
— Multiply two points Mz = M, *M, = M, + M,
e Foundation: Given My and M,, it is not easy to g
- Can't easily find the multiplicative inverse
e Multiply other’s public key with own private key
-~ Alice and Bob have both calculated: g*K, *Kg

Public Key Multiplication

Alice | Ka |Pa=g*Ka |P,*K; = g *K, *Kg

Bob | Ke |Pe=g*Ks |Pg*K, = g *K;z *K,

(c) Rajaram Pejaver

bers constituting a field.

+ M, ... (M,times)
A

Diffie-Hellman Algorithm (6)

EC Cryptography: Final thoughts.

e EC Math is more complex & slower, hence smaller keys are adequate.
— Further, EC performance scales better.

e Key sizes (in bits) for comparable strengths in different systems
— Cost factor compares EC to PKC

Symmetric PKC EC Cost
Keys Keys Keys | Factor

80 1024 160 3

112 2048 224 6

128 3072 256 10

192 7680 384 32

256 | 15360 521 64

e Remember: Diffie Hellman supports
-~ ONLY Key Exchange.
-~ No signatures.
— No direct encryption.

(c) Rajaram Pejaver 10

Key Exchange using RSA (1)

Basic Concepts.

e Key generation:
— Select modulus n, product of two primes: n=p*q i

— Select public exponent e.
e A good choice is F, (65537).

- Select private exponent d
e suchthatd*e=1 modulo LCM(p-1,q-1)
e dis the multiplicative inverse of e

e Encryption consists of modular exponentiation of plaintext m with e
- m*%n <> ¢ (where m<n)
e Decryption consists of modular exponentiation of encrypted text ¢ with d
c?%n=>mM)%n=>m%n=>m
— Because in the exponent, e*d =1 (kind of ©)

(c) Rajaram Pejaver 11

Key Exchange using RSA (2)

Example: using modulo math and small numbers.

e Key generation by Alice:
_ p=971,q=719, n= 698149 (p*q)
- e=3,d=464307
e Encryption by Bob with Public Key e: Plain text m = 123
- 123”3 % 698149 = 464569
e Decryption by Alice with Private Key d: Crypto text = 464569
— 4645697464307 % 698149 = 123 !l
e Plaintext chosen by Bob would be the proposed secret session key K,z
— Only Alice has private key d and can decrypt the message to retrieve K,g.

e Calculator: http://people.eku.edu/styere/Encrypt/RSAdemo.html

(c) Rajaram Pejaver 12

http://people.eku.edu/styere/Encrypt/RSAdemo.html

Signhatures using RSA

Similar to encryption, but backwards.

Use the same keys as before.
Signing consists of modular exponentiation of plaintext m with d
- s=mv%n
Verification consists of modular exponentiation of signature s with e
sc%n=> M)e%n=>m%n=>m
As an example, Alice signs with Private Key d the value m = 123.
- 1237464307 % 698149 = 91655

Bob validates the signature using Alice’s Public Key e
- 91655"3 % 698149 = 123

EC math can be used with RSA
— NSA has defined a “Suite B” that includes EC-RSA

(c) Rajaram Pejaver 13

PKC Issues & Problems

The need for certificates, CAs, chaining, revocation.

e Associating Public Keys with actual subjects.
- When you encrypt, how do you know that you have the correct public key for Alice?
- Are you sending a message securely to the wrong person?
- We need a secure directory. DNS isn’t good enough.
- The X.500 directory service happened to be under development at the time.
e Only one public key is needed per person
- You can have many names and many associations and many certificates
- Protect the private key in hardware
e X.509 certificates securely associate X.500 names with public keys
- Atrusted Certificate Authority vouches for the association

e Certificate revocation is messy
- CRLs, OCSP, ...

(c) Rajaram Pejaver 14

PKC Applications

Encryption, Signatures, Authorization.

Examples of PKC usage:
e Public Key based Encryption:

Conditional Access in SA PowerKey. EMMs are encrypted with PKC.
SSL, ssh, IPSEC, etc. for connection encryption.

PGP for file encryption.

SecurlD fobs do not use RSA, even though it is labeled as such.

e Signatures to establish identity.

STB firmware, cable modem firmware,

e Authorization certificates.

Difference between Identity and Authorization certificates (PACs)

(c) Rajaram Pejaver

15

Thank you for listening!!

Copyright 2002 by Randy Glasbergen.
www.glasbergen.com

e Questions?
e Send feedback to A O~

rajaram@pejaver.com

XZaKFI |
TSYENC
NBEPGHU

; EIAS BEEGEN

“Encryption software is expensive...so we just
rearranged all the letters on your keyboard.”

(c) Rajaram Pejaver

16

