

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 1

cap: A packet generator for the UMTS Gn/Gp interface

Table of Contents:
cap: A packet generator for the UMTS Gn/Gp interface.. 1

Architecture... 2
Script Execution Contexts... 3
Tunnel Endpoint IDs... 4

Writing Scripts .. 4
Syntax ... 4
Variables ... 4
Values ... 5
The @ Operator .. 5
Variable Substitution .. 6
IE value Substitution... 6
Composing and Sending Messages... 6
Script Control.. 7
System Variables .. 8
Data packets .. 9
PCAP Streams... 9

Supported Procedures ... 9
Supported IE fields ... 10
GTP Header control variables... 12
Report.. 12
Appendix A: Unimplemented IEs... 13
Appendix B: Sample Scripts... 14

Contact author at raj@pejaver.com for executables.

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 2

Architecture

An arbitrary number of hosts running cap can be used to simulate a UMTS core network.
The program can be used in any of several modes. Typically, one of the hosts will be the
‘controller’ and will execute scripts from a script file. Scripts allow GTP packets to be
composed and transmitted, and allow triggers to be defined. A script can also contain
commands to control the other hosts. These hosts receive commands from the controller
over the ‘management’ connection (TCP port 5000, by default.) Besides being a
“controller”, each instance of cap can simulate a GGSN, SGSN or CDF (Charging
Function). A host can be a controller and also simultaneously simulate a device by
exchanging GTP packets. However, there are some advantages to dedicating a host for
just sending messages to other hosts that simulate devices.

Each cap will also respond to interactive script commands from stdin. Interactive
commands can also be sent to remote instances of cap using ‘nc’ to TCP port 4000.
Connecting to port 5000 using ‘nc’ may seem to work, but is not recommended. GTP
traffic is typically exchanged over UDP ports 2123 and 2152. GTP traffic can be sent to
other ports via script options. All default port assignments can be overridden on the
command line. To run cap:

 cap [-t mgmtp] [-s stdp] [-u ctlp] [-d datap] [cm dfile]*

The internal architecture of cap is shown below. GTP messages containing Gn
procedures are composed and queued for transmission at a specified time. Incoming
messages can trigger predefined script statements, which can then compose messages in
response.

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 3

Scripts compose the messages that are to be transmitted. A transmission time is specified
for each message. After they are encoded, outbound messages are added to a transmit
queue and are transmitted at the specified time.

The program reads and processes the contents of the script files specified in the cap
command line when it starts. After all commands have been processed, the program
waits for additional commands from stdin while also listening for incoming UDP packets
and incoming TCP connections. The program will terminate only when the time value
specified in a $quit statement expires.

Script Execution Contexts
Messages are composed in one of three Execution Contexts:

1. The main script files specified in the cap command line. Messages composed
interactively via stdin (or remote console) also fall into this category.

2. The script received from a control host due to a $remote statement. Each remote
script received is an independent context.

3. The body of a trigger executed due to a matching incoming message. Each
trigger invocation is an independent context. This is the most powerful
envronment.

The script composes the messages that are to be transmitted. After they are encoded,
outbound messages are added to the transmit queue. The exact time of transmission is
controlled the $TimeDelay variable. It specifies the transmission time as the number of
milliseconds after the start of the script environment.

The value of $TimeDelay is reset to 0 at the start of each of the above three situations.
If the script changes the value of this variable to 300, then the next message will be
transmitted no earlier than 300 ms after the start of the environment. For example, while
responding to a incoming message in a trigger, setting $TimeDelay to 300 will cause the
response to be sent 300 ms after the incoming message is received.

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 4

The script will usually increment the value of $TimeDelay to maintain the correct
sequence of message transmission. However, the value can be reset to 0 if necessary.
Note that the value of $TimeDelay at the end of one script (like a trigger) will not affect
the timings of another script (like a trigger for the next message.)

Tunnel Endpoint IDs
Cap maintains a table of Tunnel Endpoint IDs (TEIDs). Based on the value of the
GTPtied field in an incoming packet, it sets up the following four variables for use by a
triggered script: $PeerControl, $PeerData, $LocalControl, $LocalData .

Writing Scripts

Syntax
Scripts are a sequence of statements. Statements can assign values to variables and
fields, compose and send messages, or control the flow of the script.

All statements have a syntax like: Name = Value.

All characters in a line following a ‘#’ or “//” up to the newline character are ignored.
Either format can be used for comments.

White space is defined as the set of characters ‘ ‘ (space), ‘,’ (comma), ‘;’ semicolon,
‘\t’(tab), ‘\n’ (newline) and ‘\r’ (return). Whitespace is generally ignored, but will
separate names and values, i.e., Names cannot contain whitespace characters.

The delimiter between a Name and a Value can be ‘=’ (equal) or ‘:’ (colon).

Variables
Variable names consist of the characters A-Z, 0-9, $ and _. All names are case
insensitive and can be up to 127 chars long. To identify a name, the script must specify
enough leading characters of the name to find a unique match. For example,
$Destination can be specified as $dest since no other name starts with $dest .

By convention, predefined system variables start with a $. System variables are shown in
a table below. For example: $destination, $repeat . It is suggested that all user
defined variables also start with a $.

IE Field names and GTP header variables do not start with a $. These names are listed in
separate tables below. Example names are: GTPteid, NSAPI .

Assigning a value to a system variable usually causes the variable to be updated. Some
values are set by cap for use by the script. For example, SenderIP, $Repeat,
$EndRepeat . It doesn’t make sense to assign values to some variables, like $end or
$rand .

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 5

Assigning an IP address value to a procedure name is how message composition is
started.

Assigning a value to an IE Field variable causes that IE to be inserted into the outgoing
message. This is how outgoing messages are composed. Assigning a value to a GTP
header variable sets those values in the GTP header of outgoing message. These
variables are also used to access values of fields in incoming messages.

Values
Values can be up to 127 characters long. If a value needs to contain whitespace, then the
string should be enclosed in quotes. Either ‘”’ (double quote) or “’” (single quote) can be
used. For example, “this is a string”, and ‘192.168.1.100, [1111:2222::9999]’.

The @ Operator
A value can also be an expression that has been evaluated using the ‘@’ operator. For
example, @1+2+3 evaluates to 6. The available operators are listed in the table below.

Note that the expression is evaluated from left to right and all operators have equal
precedence. So, @2+2*3 evaluates to 12, not 8. There are no parenthesis. If one is
needed then the expression can be evaluated in multiple statements.

If there is whitespace between the values and operators then the whole expression must
be within quotes.

Numbers can be in decimal (123), hexadecimal (0xffee) or octal (0777).

If a non numeric string is used in an arithmetic operation, it is treated as a 0.

When a comparison operator is used, the result will be a 1 (true) or 0 (false). For
example, @25%20>=1+1 will evaluate to 2.

Strings and numbers can be concatenated using ‘&’. FYI, MS Excel uses this operator to
concatenate.

+ Add numbers only

- Subtract numbers only

* Multiply numbers only

/ Divide numbers only

% Modulo numbers only

& Concatenate numbers and strings

> Compare “greater than” numbers only

>= Compare “greater than or equal to” numbers only

< Compare “less than” numbers only

<= Compare “less than or equal to” numbers only

== Compare “equal to” numbers and strings

!= Compare “not equal to” numbers and strings

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 6

Variable Substitution
The current value of a variable is substituted during expression evaluation. For example:
$TimeDelay = @$TimeDelay+300 causes the system variable to be incremented by
300. NSAPI = “@$repeat % 11” causes an NSAPI IE to be added to the outgoing
msg with the computed value. Note that the second example had quotes only because it
contains space characters for readability. It is equivalent to: NSAPI = @$repeat%11 .

IE value Substitution
Referencing an IE or GTP header field during expression evaluation while responding to
an incoming message has a special meaning. It causes the corresponding value to be
extracted from the incoming message and inserted into the expression. For example,
NSAPI = @NSAPI+1 causes an IE to be added to the outgoing message with a value that
is 1 more than the NSAPI value in the incoming message.

IE value substitution happens only for Trigger execution contexts. This is the only
context where there is a message to be read.

Note that a null string is substituted if the incoming message does not contain the
referenced field. For example, if the incoming message does not contain the NSAPI IE,
“NSAPI = @NSAPI+1 ” will evaluate to “NSAPI = @+1 ”, which will cause an error.
The $If statement can be used to verify existence of a IE in the incoming message. For
example,
 $if = @NSAPI
 NSAPI = @NSAPI+1
 $endif = 1

Composing and Sending Messages
Messages are composed by listing the IEs between the ProcedureName statement and a
“$end” statement. The ProcedureName statement lists the Name and the target IP
address and UDP port. For example: CreatePDPContextRequest =
192.168.2.22:2123 . If the port number is not specified, the default port is 2123 (or
whatever was specified in the –u option.) IE statements made outside the scope of a
message composition will be ignored (i.e., before a ProcedureName statement or after the
$end statement). Examples of composing and sending a message are:
 CreatePDPContextRequest = 192.168.2.22
 IMSI = "4045612345678
 Recovery = 1
 TEIDData = 0x12345678
 TEIDControl = 0x12345679
 NSAPI = 10
 GSNAddress = 10.40.30.41
 GSNAddress = 10.40.30.42
 EndUserAddress = 10.22.33.44
 AccessPointName = cuegroup.com
 MSISDN = 12122215151
 RATType = 4
 $end = send

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 7

and

 GPDU = 192.168.1.104:2152
 GTPTEID = @TEIDData
 GTPSeq = @GTPSeq
 gpdudata = "this is a time for all good men to ea t
cake"
 $timedelay = @$timedelay+200
 $print = "Sending GPDU to GGSN"
 $end=send

Script Control
There are several script control constructs available.

$repeat = nnn
 statement
 statement
 ….
$endrepeat = 1

The block of embedded statements will be repeated nnn times.
Two system variables are automatically updated during each
iteration:

• $repeat will contain the iteration count in the range 1 .. nnn
• $endrepeat will contain the repeat count (nnn). The value

specified for $endrepeat is ignored (specified as 1 in the
example to the left.)

$remote = ipaddr
[:prt]
 statement
 statement
 ….
$endremote = 1

The block of embedded statements will be sent to the remote host.
This allows commands and trigger definitions to be sent to the
remote host, thereby avoiding the need for script files at that end.
The default value for the destination port is 5000. The value
specified for $endremote is ignored (specified as 1 in the example
to the left.)

$trigger =
Proc[:tid]
 statement
 statement
 ….
$endtrigger = 1

The block of embedded statements will be executed when an
incoming Procedure is seen. If a tunnel ID (tid) is specified, then
the GTPteid field of the incoming message must match it.
Multiple triggers may be defined. Trigger definitions persist.
Redefinitions will cause the latest definition to be used. The value
specified for $endtrigger is ignored (specified as 1 in the example
to the left.)

$if = condvalue
 statement
 statement
 ….
$endif = 1

The block of embedded statements will be executed if the
condvalue is a nonzero numeric value. The condvalue will
typically be an expression starting with ‘@’. The value specified
for $endif is ignored. For example:
 $if = @GTPsuspendrequest
 GTPsuspendresponse = 1
 $endif = 1

$include =
filename

The block of statements in the specified file will be processed.
Processing will continue after the $include statement when all
the lines in the file have been processed. Nested includes are
allowed.

It is sometimes useful to type in a $include command
interactively on the console to issue a sequence of commands.

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 8

$quit = timedelay The program will stop after the specified number of milliseconds.
A zero value will cause the program to terminate immediately,
which may be a bad idea if there are unsent messages in the
transmit queue.

It is possible to type in a $quit command interactively on the
console to cause the program to display the final report and exit.

$sleep = timedelay The program will sleep for the specified number of milliseconds.
The program will not send out queued messages or respond to
incoming messages while it is sleeping. Most scripts will
increment the value of the $TimeDelay variable instead of using
$sleep . This construct is useful mostly when a controller is
sending commands to other SGSN and GGSN simulators with
$remote statements.

$define = varname This allows a new user defined variable to be created. Redefining
a previously defined user defined variable will erase its previous
value.

$print = string The specified string is printed when the statement is executed.
Note that, depending on the value of $TimeDelay , the message
containing the $print statement may be transmitted much later
than when the string is displayed.

System Variables
$timedelay = value This variable defines when a queued message is actually

transmitted. It is detailed in its own section.
$timedistribution
= n

This option delays the message by a random time in the range 0..n-1
milliseconds. It does not change the value of the $TimeDelay
variable.

$dropPercentage Must be a value in the range 0 to 100. It specifies the percentage of
packets awaiting transmission that will be randomly dropped.

$rand Random value, a 32 bit integer. A different value is returned each
time the variable is accessed. For example:
 $var1 = @$rand

$peerData The Data TEID of the peer. For example, while sending a GPDU,
 GTPteid = @$peerData

$peerControl The control TEID of the peer. For example, while sending a GPDU,
 GTPteid = @$peerControl

$localData The Data TEID of the receiving side associated with $peerData
and $peerControl .

$localControl The Control TEID of the receiving side associated with $peerData
and $peerControl.

$var1 Can be used in scripts by those too lazy to use $define
$destination Can be used in scripts by those too lazy to use $define

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 9

Data packets
The content of a transmitted GPDU is specified by setting the gpdudata field. The
contents of an incoming data packet can be obtained by reading this field. For example:

gpdudata = “Hi Mom” Encapsulates and sends a static string
gpdudata = @$var1 Encapsulates and sends contents of $var1

Note that Wireshark sometimes flags data packets as being malformed because it expects
gpdu data to start with an IP layer header.

PCAP Streams
The $definepcap keyword can be used to read packets from a PCAP file and insert them
into GPDU packets. The first 14 bytes of each packet read is to be an Ethernet header and
is skipped.

$definepcap = $strname This defines a new stream variable called $strname . The

variable is not yet associated with any PCAP file. There can
be more than one stream open at a time. The stream file will
be closed at EOF.

$strname = “filename” This construct opens a PCAP file and associates it with the
stream $strname . An error message will be printed if the
file cannot be opened.

gpdudata = @$strname This reads the next packet from the stream and inserts it into
gpdudata . Packet data cannot be moved to any variable
other than gpdudata . This construct would typically be
placed inside a loop. If no packet is read, then gpdudata
will contain 0 bytes.

Example:

$definepcap = $stream // define variable $stream
$stream = "test/test.pcap" // open pcap file

$var1 = 1 // first sequence number
$repeat = 10 // send 10 packets

GPDU = 192.168.1.60:2152 // construct a GPDU
 GTPTEID = 1234567 // something…
 GTPSequence = @$var1

 gpdudata = @$stream // read next packet from pcap
$end = GPDU // end GPDU definition

$var1 = @$var1+1 // increment sequence number

$endrepeat = 10

Supported Procedures
All the procedures in 3GPP 29.060 are supported.

ID ProcedureName
1 EchoRequest

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 10

2 EchoResponse
3 VersionNotSupported

16 CreatePDPContextRequest
17 CreatePDPContextResponse
18 UpdatePDPContextRequest
19 UpdatePDPContextResponse
20 DeletePDPContextRequest
21 DeletePDPContextResponse
22 InitiatePDPContextActivationRequest
23 InitiatePDPContextActivationResponse
26 ErrorIndication
27 PDUNotificationRequest
28 PDUNotificationResponse
29 PDUNotificationRejectRequest
30 PDUNotificationRejectResponse
48 IdentificationRequest
49 IdentificationResponse
50 SGSNContextRequest
51 SGSNContextResponse
52 SGSNContextAcknowledge
53 ForwardRelocationRequest
54 ForwardRelocationResponse
55 ForwardRelocationComplete
56 RelocationCancelRequest
57 RelocationCancelResponse
58 ForwardSRNSContext
59 ForwardRelocationCompleteAcknowledge
60 ForwardSRNSContextAcknowledge
254 EndMarker
255 GPDU

Supported IE fields
The following Information Elements defined in 3GPP 29.060 are supported.

ID IEName Type
1 Cause char
2 IMSI TBCD
3 RAI TBCD
4 TLLI int
5 PacketTMSI int
8 ReorderingRequired char
11 MAPCause char
13 MSValidated char
14 Recovery char
15 SelectionMode char
16 TEIDData int
17 TEIDControl int
19 TeardownInd char

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 11

20 NSAPI char
21 RANAPCause char
23 RadioPrioritySMS char
24 RadioPriority char
25 PacketFlowId short
26 ChargingCharacteristics short
27 TraceReference short
28 TraceType short
29 MSNotReachableReason char

127 ChargingID int
128 EndUserAddress EUAddr
131 AccessPointName string
132 ProtocolConfigurationOptions string
133 GSNAddress IP
134 MSISDN TBCD
138 TargetIdentification string
139 UTRANTransparentContainer string
141 ExtensionHeaderTypeList string
142 TriggerId string
143 OMCIdentity string
144 RANTransparentContainer string
145 PDPContextPrioritization string
147 SGSNNumber string
148 CommonFlags char
149 APNRestriction char
150 RadioPriorityLCS char
151 RATType char
163 HopCounter char
165 MBMSSessionIdentifier char
166 MBMS2G3GIndicator char
167 EnhancedNSAPI char
170 MBMSSessionRepetitionNumber char
171 MBMSTimeToDataTransfer char
173 BSSContainer string
176 BSSGPCause char
177 RequiredMBMSbearercapabilities string
178 RIMRoutingAddressDiscriminator char
181 MSInfoChangeReportingAction char
183 CorrelationID char
184 BearerControlMode char
185 MBMSFlowIdentifier string
187 MBMSDistributionAcknowledgement char
188 ReliableINTERRATHANDOVERINFO char
190 FQDN string
191 EvolvedAllocationRetentionPriority1 char
197 CSGMembershipInformation char
202 GGSNBackOffTime char

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 12

GTP Header control variables
The following field variables can be read and written. While responding to an incoming
message, these variables can be accessed to read values in the incoming message. Setting
the values will set GTP header values in the outgoing message being composed. For
example,
 GTPSequence = @GTPSequence // copy value from inco ming msg
 GTPteid = $PeerControl // peer’s tunnel ID

GTP Header Description

GTPteid Tunnel Endpoint Identifier (32 bit integer)

GTPsequence Sequence Number (16 bit integer)

GTPnpdu N-PDU Number (16 bit integer)

GTPpdcppdunum PDCP PDU Number

GTPsuspendrequest Suspend Request (0 or 1)

GTPsuspendresponse Suspend Request (0 or 1)

GTPmbmssupport (0 or 1)

GTPmsinfochange (0 or 1)

The following field is extracted from the incoming UDP packet.

senderip

IP address of the sender of the incoming packet. It is used while
composing a response in triggers. For example:
 UpdatePDPContextResponse = @senderIP

Report
A report is generated at the end of a run, when $quit fires. The report contains:

• Name and number of procedures processed, incoming and outgoing.
• A table of local and remote TEIDs (data & control), IMSI and NSAPI. This can

be useful while using the associated PCAP.

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 13

Appendix A: Unimplemented IEs
The following Information Elements defined in 3GPP 29.060 are not supported.

9 AuthenticationTriplet
12 PTMSISignature
18 TEIDData2
22 RABContext

129 MMContext
130 PDPContext
135 QOSProfile
136 AuthenticationQuintuplet
137 TFT
140 RABSetupInformation
146 AdditionalRABSetupInformation
152 UserLocationInformation
153 MSTimeZone
154 IMEISV
155 CAMELChargingInformationContainer
156 MBMSUEContext
157 TMGI
158 RIMRoutingAddress
159 MBMSProtocolConfigurationOptions
160 MBMSServiceArea
161 SourceRNCPDCPcontextinfo
162 AdditionalTraceInfo
164 SelectedPLMNID
168 MBMSSessionDuration
169 AdditionalMBMSTraceInfo
174 CellIdentification
175 PDUNumbers
179 ListofsetupPFCs
180 PSHandoverXIDParameters
182 DirectTunnelFlags
186 MBMSIPMulticastDistribution
189 RFSPIndex
192 EvolvedAllocationRetentionPriority2
193 ExtendedCommonFlags
194 UCI
195 CSGInformationReportingAction
196 CSGID
198 AMBR
199 UENetworkCapability
200 UEAMBR
201 APNAMBRwithNSAPI
203 SignallingPriorityIndication
204 SignallingPriorityIndicationwithNSAPI
251 ChargingGatewayAddress

Packet generator for UMTS Gn/Gp Cue, 12/27/2011 14

Appendix B: Sample Scripts

// Example: create PDP Context and exchange GPDUs
$remote = 192.168.1.104 # send script to remote c ap
 $trigger = CreatePDPContextRequest # define a trig ger on remote cap

 $var1 = @$rand%100000*2 # random even number in r ange 0..199998

 // Send response when a CreatePDPContextRequest i s received
 CreatePDPContextResponse = @senderIP # reply
 GTPTEID = @TEIDControl # from incoming PDU
 cause = @$rand%4+128 # random number
 IMSI = @imsi # copy from req pkt
 TEIDData = @$var1 # set random teid
 TEIDControl = @$var1+1
 NSAPI = @nsapi # copy from req pkt
 EndUserAddress = 20.30.40.50
 GSNAddress = 10.20.30.41
 GSNAddress = 10.20.30.42
 $timedelay = 30 # delay before response
 $print = "Reply with CreatePDPContextResponse"
 $end = CreatePDPContextResponse

 // send a few GPDUs to SGSN
 $timedelay=@$timedelay+1000 # wait 1 sec after p rev
 $repeat = 2
 GPDU = @senderip:2152 # back to sender
 GTPTEID = @TEIDdata
 GTPSequence = $repeat
 gpdudata = "Wicked winged wabbits"
 $timedelay=@$timedelay+30
 $print = "Sent: Wicket winged wabbits"
 $end = GPDU
 $endrepeat = 0

 $endtrigger = CreatePDPContextRequest
$endremote = 192.168.1.104 # end of script sent t o remote cap

// main
$repeat = 10 # create 10 PDP contexts
 $var1 = @$rand%100000*2 # random even number in r ange 0..199998

 # packet definition, starts a new transaction
 CreatePDPContextRequest = 192.168.1.104 # destina tion GGSN
 GTPTEID = 0 # always 0 for CreatePDP
 IMSI = "@12345678 & $var1" # concatenate
 Recovery = 1 # whatever
 TEIDData = @$var1 # use random values
 TEIDControl = @$var1+1 #
 NSAPI = @$repeat%11 # $repeat=iteration count
 GSNAddress = 10.40.30.41
 GSNAddress = 10.40.30.42
 EndUserAddress = 10.22.33.44
 AccessPointName = cuegroup.com
 MSISDN = 12122215151
 RATType = 4
 $timedelay=@$timedelay+300 # 300 ms between requ ests
 $print = "Sending CreatePDPContextRequest to GGSN "
 $end = CreatePDPContextRequest #
$endrepeat = 0
$quit = 60000 # auto stop after 1 min, wait for r esponses to come

